77779193永利集团

生物物理交叉学科学术沙龙

发布日期:2019-12-20

生物物理学(Biological Physics)是物理学与生物学相结合的一门交叉学科,是应用物理学的概念和方法研究生物各层次结构与功能的关系,生命活动的物理、物理化学过程,和物质在生命活动过程中表现的物理特性的生物学分支学科,是交叉学科研究的重要领域之一。为了推动学术交流,77779193永利集团交叉学科研究所举办“生物物理”学术沙龙,邀请国内相关专家来我院进行学术报告和交流探讨,欢迎感兴趣的老师和同学参加。


一、时间及地点

时间:20191221日上午9-12

地点:环境楼206报告厅


二、报告安排


报告人

工作单位/职务

报告题目

1

宁璐璐

副教授 / 陕西科技大学轻工技术与科学学院

基于多肽的仿生纳米通道中水分子的超快输运

2

郭晶晶

教授 / 南京农业大学生命科学学院

正丁醇破坏微生物膜结构的分子机制研究

3

郑良振

研究员 / 腾讯AI Lab

基于机器学习的蛋白质-配体亲和力预测

4

NG TZE YANG JUSTIN

博士 / 新加坡南洋理工大学生命科学学院

基于分子模拟的生物分子折叠和识别


联系人:李伟峰,13046031298

箱: lwf@sdu.edu.cn


报告介绍:

报告1. 基于多肽的仿生纳米通道中水分子的超快输运

报告人:宁璐璐 (副教授,硕士生导师,陕西科技大学轻工技术与科学学院)

摘要:在新一代的仿生膜构建过程中,人工合成的水通道有望取代天然水通道蛋白AQP用于海水淡化。多肽接枝的柱状芳烃pR-PH表现出与天然水通道蛋白相当的渗透性,是目前已知的最高效的人工水通道。多肽接枝的柱状芳烃在合成过程中产生两种非对映异构体pR-PHpS-PH, pR_PH的渗透性远优于pS-PH。但是,由于两个分子不能结晶,结构难以确定,导致不同渗透性的分子机制通过实验的方式很难阐明。通过分子动力学模拟,模拟了pR-PHpS-PH POPC膜中的构型变化及水通过过程。结果显示,pR-PH的渗透性与实验结果一致,水分子则不能通过pS-PH pS-PH中与柱状芳烃相邻的苯丙氨酸侧链翻转进入通道中,阻拦了水分子的通过,导致其较差的渗透性。该工作从原子水平上阐明了pS-PHpR-PH不同渗透性的机制,为开发高效人工水通道仿生膜提供了理论基础。


报告2. 正丁醇破坏微生物膜结构的分子机制研究

报告人:郭晶晶 (教授,博导,南京农业大学生命科学学院)

摘要:生物燃料丁醇是极具发展潜力的新一代生物能源,但发酵微生物对丁醇的低耐受性严重制约了丁醇生产的经济可行性。研究表明,高浓度丁醇对细菌细胞膜具有破坏作用,因此,研究丁醇对微生物膜影响的分子机制对提高细菌对丁醇的耐受性十分重要。通过计算模拟与实验相结合,我们系统考察了大肠杆菌内外膜对丁醇环境的应答,深入研究和讨论了高浓度丁醇破坏细胞内膜的分子机制,以及含不同LPS的外膜抵御丁醇渗透的分子机制,相关发现对基于微生物膜提高发酵微生物对丁醇的耐受性提供了理论支持。


报告3. 基于机器学习的蛋白质-配体亲和力预测

报告人:郑良振 (研究员,腾讯AI Lab

摘要:Computational drug discovery provides an efficient tool for helping large-scale lead molecule screening. One of the major tasks of lead discovery is identifying molecules with promising binding affinities toward a target, a protein in general. The accuracies of current scoring functions that are used to predict the binding affinity are not satisfactory enough. Thus, machine learning or deep learning based methods have been developed recently to improve the scoring functions. In this study, a deep convolutional neural network model (called OnionNet) is introduced; its features are based on rotation-free element-pair-specific contacts between ligands and protein atoms, and the contacts are further grouped into different distance ranges to cover both the local and nonlocal interaction information between the ligand and the protein. The prediction power of the model is evaluated and compared with other scoring functions using the comparative assessment of scoring functions (CASF-2013) benchmark and the v2016 core set of the PDB bind database. The robustness of the model is further explored by predicting the binding affinities of the complexes generated from docking simulations instead of experimentally determined PDB structures.


报告4. 基于分子模拟的生物分子折叠和识别

报告人:NG TZE YANG JUSTIN (博士,新加坡南洋理工大学生命科学学院)

摘要:MD Simulation is an in-silico tool that allows the sampling of the conformation space of biomolecules by integrating Newton’s equations of motion. MD Simulations are used in complement with experimental methods to provide insight in the understanding of biological processes. I will present my studies of several biological systems involving MD simulations- from the importance of a cofactor in the folding of a peptide-lipid complex, construction models of protein-peptide complexes, to understanding the conformational plasticity of the intrinsically disordered region in cofactor binding.