作为第一和通信作者6篇PRL、3篇PRA Rapid Communication,30篇PRA。
1. C. L. Liu, Yan-Qing Guo, D. M. Tong Enhancing coherence of a state by stochastic strictly incoherent operations Phys. Rev. A 96, 062325 (2017) 2. P. Z. Zhao, Xiao-Dan Cui, G. F. Xu, Erik Sjöqvist, D. M. Tong Rydberg-atom-based scheme of nonadiabatic geometric quantum computation Phys. Rev. A 96, 052316 (2017) 3. P. Z. Zhao, G. F. Xu, Q. M. Ding, Erik Sjöqvist, D. M. Tong Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces Phys. Rev. A 95, 062310 (2017) 4. G. F. Xu, P. Z. Zhao, D. M. Tong, Erik Sjöqvist Robust paths to realize nonadiabatic holonomic gates Phys. Rev. A 95, 052349 (2017) 5. G. F. Xu, P. Z. Zhao, T. H. Xing, Erik Sj¨oqvist, D. M. Tong, Composite nonadiabatic holonomic quantum computation Phys. Rev. A 95, 032311 (2017) 6. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong Universal freezing of asymmetry Phys. Rev. A 95, 022323 (2017) 7. Xiao-Dong Yu, Da-Jian Zhang, G. F. Xu, D. M. Tong Alternative framework for quantifying coherence Phys. Rev. A 94 (2016) 060302 (Rapid Communications). 8. Pei-Zi Zhao, G F Xu, D M Tong Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases Phys. Rev. A 94 (2016) 062327. 9. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong General approach to find steady-state manifolds in Markovian and non-Markovian systems Phys. Rev. A 94 (2016) 052132. 10. Xiao-Dong Yu, Da-Jian Zhang, C. L. Liu, D. M. Tong Measure-independent freezing of quantum coherence Phys. Rev. A 93 (2016) 060303 (Rapid Communications). 11. Da-Jian Zhang, Hua-Lin Huang, D. M. Tong1 Non-Markovian quantum dissipative processes with the same positive features as Markovian dissipative processes Phys. Rev. A 93 (2016) 012117. 12. G. F. Xu, C. L. Liu, P. Z. Zhao, D. M. Tong Nonadiabatic holonomic gates realized by a single-shot implementation Phys. Rev. A 92 (2015) 052302. 13. J. Zhang, Thi Ha Kyaw, D. M. Tong, Erik Sjöqvist, L. C. Kwek Fast non-Abelian geometric gates via transitionless quantum driving Sci. Rep. 5, 18414 (2015). 14. Xiao-Dong Yu, Yan-Qing Guo, D M Tong A proof of the Kochen–Specker theorem can always be converted to a state-independent noncontextuality inequality New J. Phys. 17 (2015) 093001. 15. Da-Jian Zhang, Xiao-Dong Yu, D M Tong Theorem on the existence of a non-zero energy gap in adiabatic quantum computation Phys. Rev. A 90(2014)042321. 16. Long-Jiang Liu, D M Tong Completely positive maps within the framework of direct-sum decomposition of state space Phys. Rev. A 90(2014)012305. 17. X D Yu, D M Tong Coexistence of Kochen-Specker inequalities and noncontextuality inequalities Phys. Rev. A 89(2014)010101 (Rapid Communications). 18. J. Zhang, L C Kwek, E Sjoqvist, D M Tong, P Zanardi Quantum computation in noiseless subsystems with fast non-Abelian holonomies Phys. Rev. A 89(2014)042302. 19. G F Xu, J Zhang, D M Tong, E Sjoqvist, L C Kwek, Nonadiabatic holonomic quantum computation in decoherence-free subspaces Phys. Rev. Lett, 109(2012)170501. 20. E Sjoqvist,D M Tong, L M Andersson, B Hessmo, M Johansson, K Singh Non-adiabatic holonomic quantum computation New J phys., 14(2012)103035 21. M Johansson, E Sjoqvist, L M Andersson, M Ericsson, B Hessmo, K Singh, D M Tong Robustness of nonadiabatic holonomic gates Phys. Rev. A 86(2012)062322 22. D M Tong, Reply to comments on quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation Phys. Rev. Lett 106 (2011)138903. 23. X J Fan, Z B Liu, Y Liang, K N Jia, D M Tong, Phase control of probe response in a Doppler-broadened N-type four-level system Phys. Rev. A 83(2011)043805. 24. D M Tong Quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation Phys. Rev. Lett., 104(2010) 12:120401 25. C W Niu, G F Xu, L J Liu, L Kang, D M Tong, L C Kwek, Separable states and geometric phases of an interacting two-spin system Phys. Rev. A, 81(2010)1:012116 26. S Yin, D M Tong Geometric phase of a quantum dot system in nonunitary evolution Phys. Rev. A 79 (2009)4: 044303 27. C S Guo, L L Lu , G X Wei, J L He, D M Tong Diffractive imaging based on a multipinhole plate Optics Letters 34(2009)12:1813 28. D M Tong, K. Singh, L C Kwek, C H Oh Sufficiency Criterion for the Validity of the Adiabatic Approximation Phys. Rev. Lett., 98(2007)15:150402 29. X X Yi, D M Tong, L C Wang, L C Kwek, and C. H. Oh Geometric phase in open systems: Beyond the Markov approximation and weak-coupling limit Phys. Rev. A, 73(2006)052103. 30. D M Tong, K. Singh, L C Kwek, C H Oh Quantitative conditions do not guarantee the validity of the adiabatic approximation Phys. Rev. Lett., 95(2005)11:110407 31. D M Tong, E. Sjoqvist, S. Filipp, L C Kwek, C H Oh Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed Phys. Rev. A 71(2005)032106 32. D M Tong, E. Sjoqvist, L C Kwek, C H Oh Kinematic approach to geometric phase of mixed states under nonunitary evolutions Phys. Rev. Lett., 93(2004)8:080405 33. D M Tong, L C Kwek, C H Oh, J L Chen, and L Ma Operator-sum representation of time-dependent density operators Phys. Rev. A, 69(2004)054102 34. D M Tong, J L Chen, L C Kwek, C. H. Lai, and C H Oh General formalism of Hamiltonians for realizing a prescribed evolution of a qubit Phys. Rev. A, 68(2003)062307 35. D M Tong, E. Sjoqvist, L C Kwek, C H Oh and M Ericsson Relation between the geometric phases of the entangled biparticle system and their subsystems Phys. Rev. A, 68(2003)022106 36. K Sigh, D M Tong, K Basu, J L Chen and J F Du Geometric phase for non-degenerate and degenerate mixed states Phys. Rev. A, 67(2003)3:032106 37. S X Liu, G L Long, D M Tong and Feng Li General scheme for superdense coding between multiparties Phys. Rev. A, 65(2002)02 |